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Abstract-A mathematical analysis of the thermal interface resistance is carried out on an idealized 
elemental heat flux tube for the case of a gas cavity interposed between a solid and a stationary liquid 
metal. The thermal resistance is expressed in terms of the thermal conductivities of the solid and liquid 
metal, the number of gas cavities per unit apparent area and a wettability number. The last part of the 
paper is devoted to a qualitative comparison between the theory and the test data of Bleuven et al. Good 

agreement was observed within the assumptions made. 

NOMENCLATURE 

projected interface area ; 
radius of gas activity ; 
radius of elemental heat flux tube ; 
distances from interface ; 
coefficient of proportionality for gas 
cavity volume ; 
thermal conductivity; 
gas cavity density; 
system or gas pressure ; 
normalized gas pressure for data 
reduction, P* = P/O*6 ; 
heat flow rate ; 
thermal contact resistance defined by 
equation (29) ; 
normalized thermal contact resistance 
for data reduction, 
R; = R,/R,(P = 0.6); 
radial distance from centre of the gas 
cavity in the interface plane ; 
temperature ; 
auxiliary coordinate, u = sinhc ; 
auxiliary coordinate, u = sin 6 ; 
wettability number, W = (Aa - Ag)/ 
Aa; 

x, Y, z, Cartesian coordinates: 

t Present address: University of Waterloo, Waterloo, 
Ontario, Canada. 

i: 
angle subtended by gas cavity ; 
thickness of gas cavity ; 

Y 
4, oblate spheroidal coordinate ; 

VT oblate spheroidal coordinate. 

Subscripts 
a, apparent or average ; 

C, contact ; 

e, extrapolated ; 

97 gas ; 
i, interface ; 

12, components of heat flux tube, solid 
and liquid, respectively. 

INTRODUCTION 
MANY modern power plants, whether large 
nuclear reactors or small spacecraft systems, 
utilize liquid metals as single-phase coolants. 
Since heat is conducted across solid/liquid 
metal interfaces, it is important that due account 
be made of the additional thermal resistance at 
these interfaces, especially when the heat flux is 
very large. At present this additional thermal 
resistance is determined experimentally or com- 
pletely ignored. 

Several experimental studies [l-9, 15, 16) 
dating back to the early 1950’s were directed 
towards finding the laws which governed heat 
transfer between a metal wall and a flowing liquid 
metal. It is evident that if there is contact resis- 
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tance between the metal wall and the liquid 
metal, the overall thermal conductance will 
be greatly reduced. It was found that the experi- 
mental values of Nusselt number were well 
below the predicted values. This discrepancy 
was attributed to various factors such as scale 
or oxide on the walls of the system, to gas entrain- 
ment and to the nonwetting of the tube walls by 
the liquid metal. 

Kirillov et al. [S] were able to determine 
experimentally the thermal resistance between 
NaK liquid metal flowing in a copper tube. 
They observed a significant thermal resistance 
which persisted for many hundreds of hours of 
operation of the system. After about 500 h 
this interface resistance decreased and became 
so small that it could not be measured. It was 
concluded that the continuous flow and purifi- 
cation of the liquid metal removed all traces of 
scale and oxide ; thus removing the cause of the 
interface resistance. 

Subbotin et al. [9] reported that tests with 
mercury flowing in a steel tube with uniform 
heat flux showed that the interface resistance was 
dependent upon the Reynolds number. It was 
concluded that this resistance could not be due 
to a permanent scale or oxide layer on the tube 
wall. 

Several, more recent, studies [l&12] examined 
in particular the effects of gas entrainment, 

a20 r 

nonwettability of liquid metal and the presence 
of oxides upon the heat transfer between a 
solid and a liquid metal. The other studies 
[ 13,141 used the analogy between electrical and 
thermal resistance in an attempt to clarify 
the important parameters which influence the 
flow of heat between a solid and a liquid metal, 

The most recent experimental study [17] 

0 150°C 
0.60 l zoo’c 

d 23O’C 

. 270°C 

0 1.0 2L) 3.0 40 5.0 

Pressure, P , bars absolute 

FIG. 1. Thermal resistance data from reference 1171. Wall 
treated with cold argon. 

0 150 ‘C 
.200 “C 
1.230 % 
r270 ‘C 

NaK (56 X-K) 

STAINLESS STEEL 

FIG. 2. Thermal resistance data from reference [17]. Wall treated with 
hot argon. 
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determined the effect of the system pressure, 
and the initial treatment ofthe wall on the thermal 
contact resistance between stainless steel and a 
stationary NaK liquid metal. They found that 
the system pressure had a strong influence upon 
the interface resistance, Figs. 1 and 2. The resis- 
tance (for example, at a system temperature 
of 150°C and an initial treatment of the wall 
with cold argon) decreased from about 0*6o”C/W 
at a pressure of0.6 bars absolute to about 0*15”C/ 
W at about 3 bars absolute. Upon returning to 
the initial pressure of 0.6 bars without changing 
the system temperature, they obtained about the 
same (within 5 per cent) initial thermal resistance. 
As the system temperature was increased thereby 
assuring that the liquid would wet the metal 
surface even more, the thermal resistance de- 
creased ; but always they observed the same 
characteristic curve of resistance versus system 
pressure. When the initial treatment of the wall 
was accomplished with hot argon rather than 
cold argon the thermal resistance was markedly 
decreased. Again they observed the characteristic 
curve of resistance versus system pressure. The 

simultaneous return of the system to the initial 
system pressure resulted in the same initial 
thermal resistance. 

Since their system was clean (no scale or 
oxide on the walls), and the NaK liquid metal 
was pure, and the tests were conducted with a 
static fluid, the thermal resistance was due 
exclusively to the presence of gas cavities formed 
because of the nonwettability of the liquid 
metal. 

The aim of this work is to provide a theory 
which will give the important parameters and 
their influence upon the thermal contact resis- 
tance between a solid and a stationary liquid 
metal when gas cavities are present. This theory 
excludes the effects of scales and oxides which 
may be present on walls and the effects of gas 
entrainment by the liquid 

MATHEMATICAL MODEL 

When a liquid metal is in contact withametallic 
surface, intimate contact will not occur over the 
entire common interface, Fig. 3(a). Because the 
liquid metal does not perfectly wet the solid 

liquid metal 

FIG. 3. Schematics of solid-liquid metal interfaces 
(b) Ideal interface between solid and liquid metal. 

(a) Real interface between solid and liquid metal. 
(c) Alternate ideal interface. 



96 M. MICHAEL YOVANOVICH 

surface, gas, such as air or argon, will be trapped 
in the deepest parts of the surface. These gas 
cavities will in general vary in number, size; 
shape, and distribution over the apparent inter- 
face. It is evident that these gas cavity characteris- 
tics will depend upon a number of physical and 
geometric characteristics: the type of solid. 
of liquid metal and of gas which form the inter- 
face, the surface roughness, the surface clean- 
liness, and the method of initial treatment. For 
the following thermal analysis it will be assumed 
that the number of cavities is known, that all the 
cavities are thin circular discs, having the same 
size. Furthermore, it will be assumed that all 
the cavities are uniformly distributed over the 
apparent interface. 

Since the thermal conductivities of the metal 
and liquid metal are much greater than the 
thermal conductivity of the gas, heat will flow 
around the gas cavity, i.e. the region of the inter- 
face occupied by the cavity is impervious to heat 
flow. As a consequence of these assumptions. 
there exists a number of identical heat flux tubes 
in the form of hexagonal cylinders having adia- 
batic walls and in the center of each tube there 
is a gas cavity. The hexagonal cylinders will be 
approximated by circular cylinders having the 
same cross-sectional area. The interface between 
the solid and liquid metal is assumed to be flat 
because for most machined solids the surface 
irregularities have very small slope [18]. 

Finally it is assumed that there is intimate 
contact between the solid and liquid metal 
beyond the cavities and, therefore, there is no 
thermal resistance at this part of the interface. 

TEMPERATURE DISTRIBUTION 

For the model of an elemental heat flux tube 
described above, Fig. 4, the temperature distri- 
bution, and implicitly the thermal resistance, 
must satisfy the Laplace differential equation 
in cylindrical coordinates : 

a2T i aT a2T _ 
F+;I_+,Z,=“, 

71 

i 

FIG. 4. Elemental heat flux tube 

and is subject to the following boundary con- 
tions : 

K aT,(r, 0) aT,(r, 0) 
1 

---z 

az 
K 

2 ___ = 0, 0 < r < a (2) 
aZ 

T,(r, 0) = T2(r, 0) = ‘&, u < r < b (3) 

K WW) _ 
1 az 

K f Tzk 0) 
- 2 ~- u<rdb (4) 

az ’ 

aT,(b,z) aT,(b, 2) o 

-_---------_ 

ar dr 
(5) 

aT,(r, 4 Q ----= 
a,- K,nb2 

,73b (6) 

aT,(r, 4 _ Q 
8Z K,nb2 

zdb (7) 

Q is the rate of heat transfer through the ele- 
mental heat flux tube per unit time, K 1 and K 2 
are the thermal conductivities of the solid and 
liquid metal respectively, and b, the radius of the 
heat flux tube, depends upon the density of gas 
cavities per unit apparent area, i.e. mb2 = 1. 

The gas cavity is represented by a thin 
circular disc of radius a and thickness 6(6/u < 1). 

The boundary condition (2) states that the disc 
is impervious to heat transfer. By using symmetry 
of heat flow arguments it is assumed that the 
common interface temperature is uniform, boun- 
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dary conditions (3) and (4). Since the disc is at 
the origin of the chosen coordinate system, 
the temperature distribution is axisymmetric and 
the heat flow lines enter and leave the interface 
at right angles and tend to become parallel to 
the z-axis at large values of z and r. At large 
distances from the interface the temperature 
field must be nearly uniform so that isothermal 
planes T,(d, I) and Tz( -d, I) can be placed at 
symmetrical distances from the interface. 

The mathematical difficulties presented by 
the mixed boundary conditions (2) and (3) can be 
circumvented by the use of oblate spheroidal 
coordinates (c, q) with the origin in the center of 
the disc [19]. Introducing the auxiliary co- 
ordinates (a, v) we have : 

u = sinh c, v=sinrj (8) 

and the cylindrical coordinates (r, z) can be 
expressed as : 

I = a cash [ cos q = a ,/(u’ + 1) ,/(l - v2), (9) 

z = asinhcsinq = auv, 

where a is the radius of the non-conducting 
disc. 

Constant values of 5 and q can be chosen to 
represent the heat flow lines and the isothermal 
surfaces respectively [19]. In particular v = 0 
describes the isothermal interface T and u = 0 
describes the adiabatic disc itself Introducing 
(9) into (1) we obtain a new expression for the 
Laplacian : 

Solutions to (10) are found by separation of 
variables ; by assuming T = U(u). V(v) and 
introducing into (10) we get : 

values of the separation constant, m2, and they 
are of the type of particular integrals, since the 
boundary conditions have not been utilized. 
Thus, for m2 = 2, we fmd as suggested by : 

-&tarPu = (1 + &I, 

and 

that 

$ tanh-’ v = (1 - v2)-l, 

T(u, v) = U. I/ = {Au + B[u tan-’ u + l]}. 

x {Cv + D[vtanh-‘v - l]} 

satisfies (10). 

(12) 

Since T(u, 0) = q, we can select D = 0 in 
(12), and add the constant K, because the 
temperature must be finite along v = 1, i.e. 
along the zaxis. The temperature in the auxiliary 
coordinates now becomes : 

T(u, v) = V{A’u + B’ [u tan-’ u + l]} 

+ & (13) 

In order for the solution to be symmetric about 
the common interface we must set A’ = 0. 
The remaining coefficient can be determined 
from the condition at distances far from the inter- 
face. Since tan-’ u + x/2 as u + 00, the tem- 
perature gradient becomes, for large values of u, 

Upon introducing condition (6) gives 

B’2 Q 
x K,nb” 

The temperature distribution in the upper 
half of the heat flux tube can now be expressed 
as: 

T,(u,v)= T’+$& 1 2t-uvhn -lu + v] (14) 

or as 

TdLd = T + fa& [sinh c sin q tan- 1 
1 

Several solutions are possible for specific (sinh c) + sin 1-j. (15) 
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This equation satisfies (1) and all the boundary 
conditions (2x6). A similar expression can be 
obtained for the lower half of the heat flux tube, 
but here Kz is to be used and the sign before the 
second term will be negative. 

An approximate expression for the tempera- 
ture distribution in polar coordinates can be 
obtained if rJa > 2.5 : 

T,(r, z) = q + g$ 
1 

x {~tan-‘[j(32a+ “)I+ J(zz+ rz)}, (16) 

THERMAL CONTACT RESISTANCE 

In Fig. 5 we have shown the isothermal sur- 
faces in the region near the interface. It can be 
shown that the maximum interface temperature 

I 

-k,- 
I 

2oQ 
k,)T’b* 

Q 

a 

FIG. 5. Temperature distribution near the interface. 

on the upstream side (solid when the heat flows 
from solid to liquid metal) occurs at the center 
of the disc and has the value T + (2/n)(aQ/ 
K,nbZ). The temperature distribution over the 
disc from (15) with (9) is : 

YOVANOVICH 

From symmetry arguments it can be shown 
that the minimum interface temperature on the 
downstream side (liquid metal) occurs at the 
center of the disc and the temperature distri- 
bution over the disc is : 

T2(r, 0) = 7y - - :&J[I - (:J2], 
0 d r d ct. (18) 

We can define an average interface temperature 
for both sides of the interface as : 

h 

Tu,(z = 0) = 5 
s 

Tl(r, 0) 2m dr 

0 

4 a3Q 
=~+--- 

3K,rcZ b4 ’ 
(19) 

and 
h 

T,& = 0) = $ 
f 

T2(r, 0) 2m dr 

0 

4 a”Q 
z~--- 

3K,rc2 b4 
(20) 

Figure 6 shows the complete temperature 
distribution for an elemental heat flux tube, and 
it is seen that the temperature along the wall of 
the flux tube is continuous through the interface 
T,(r = b) = T,(r = b) when z = 0. The average 
temperature as defined by (19) and (20) will be 
discontinuous across the interface. We could 
have shown the temperature distribution along 
the z-axis in both the solid and liquid metal, and 
this also would be discontinuous across the 
interface. All three of these temperature distri- 
butions T(r = b), T(r = 0), and T, will approach 
asymptotically the same equation as z + GC, i.e. 

T, = T(r = b) = T(r = 0) = T 

for the solid. A similar argument holds for the 
liquid metal side of the elemental heat flux 

The temperature drop across the interface 
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I 
and also that 

and so that (22) reduces to 

Ax1 = T,,(z = 0) - T,, (23) 

where T,,(z = 0) is defined by (19). 
Similarly for the liquid metal side we have : 

ATI= T--T,,(z=O). (24) 

Adding (23) and (24) gives us the total tempera- 
ture drop across the interface due to the presence 
of the gas cavity, thus : 

Temperature, T 

FIG. 6. Temperature distribution in beat flux tube. 

due to the presence of the gas cavity is defined 
as the difference between the interface tempera- 
tures which are obtained by extrapolating from 
large z (both sides) to the interface, Fig. 6, so that : 

AT, = T,, - T& = AT,, i- AT,,. (21) 

Consider one side only (solid, for example) where 

but it can also be shown that 

(25) 

where K = 2 K,KJK, + K,. 
The thermal resistance across the interface 

is defined as : 

R, = 
T,, - & AT, 8a3 

z---c 
Q Q 

~ (26) 3n2Kb4’ 

where K represents the physical characteristics 
and a, b represent the geometric characteristics 
of the interface. Equation (26) can be written in 
terms of the gas cavity density, and the wettability 
number W which is defined as the ratio of the 
wetted area to the total apparent area, i.e. 
W = A,,,/A, = (A, - A,)/A, 

Thus we have : 

; = [l - wp, (27) 

and 

b = l/,/nrr. (28) 

Thus, by substitution of (27) and (28) into (26), 
we obtain the thermal interface or contact 
resistance : 

Jn R, = 0.480 K [ 1 - W-J? (29) 

- L-2 This expression shows that the thermal resistance 
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depends upon the thermal properties of the 
solid and the liquid metal, the density of cavities 
and the wettability number. The resistance is 
independent of heat flux density. Once the 
number of cavities is fixed, the resistance can 
only be changed by means of the wettability 
number W; i.e. by the size of the cavities. 

EFFECT OF SYSTEM PRESSURE 

To determine the effect of system pressure let 
us use the model shown in Fig. 3(c). We also 
assume that the number of cavities and the total 
weight of gas is fixed, i.e. the system has been 
filled under a certain gas pressure, say argon at 
ambient conditions, and, therefore, the quantity 
of gas at the interface will remain constant as the 
system pressure is changed. 

The cavity is modelled as a cone subtending a 
very large angle a > 170” (a depends upon the 
surface roughness, surface tension, etc.). The 
height 6 of the cavity is very small relative to the 
cross section. 

The volume of the cavity can be written as 

V=Ba3 (30) 
where B is the proportionality constant and a 
is the radius of the cavity. Assuming perfect 
gas laws we can for a constant system tempera- 
ture write that a, and a, are related to the pres- 
sure change by 

a2 3 P C-1 =- al P: 
(31) 

Suppose that n is fixed, then b is also constant 
and we can write 

a2 l-W, + 

[ 1 
-= ~ 
al l--W, ’ 

(32) 

where W, and WI correspond to P, and P,, 
respectively. 

Utilizing (31) and letting P = PI/P, we 
obtain the following relationship between WI, 
W,andP: 

l - w2 p3, -= 
1 - w, 

(33) 

When (33) is substituted in the ratio R,,/RcI we 
obtain 

R,,P, = R,,P, = constant, (34) 

which shows that for a fixed system (constant 
gas weight and constant gas cavity density) and 
constant operating temperature, the thermal 
contact resistance will decrease hyperbolically 
with increasing system pressure. 

COMPARISON OF THE THEORY WITH THE 
DATA OF BLEUNVEN ET AL. [17] 

The results of the thermal analysis developed 
in this paper on thermal contact resistance made 
use of some assumptions which are here sum- 
marized : 

1. Heat transfer occurs across a flat interface 
between a solid and a stationary liquid metal. 

2. The gas cavity is impervious to heat flow. 
3. The interface is free of any oxide and the 

contact beyond the gas cavity is assumed to be 
perfect. 

4. The shapes of each gas cavity and associated 
heat flux tube were idealized as a circular disc 
and a coaxial tube, respectively. 

5. All gas cavities were assumed to be uniformly 
distributed and of the same size. 

6. The quantity of gas in the cavities was 
assumed to be constant independent of tem- 
perature and pressure changes. 

The test data of Bleunven Ed al. [ 173 satisfy the 
first three approximation listed above, and it is 
assumed that the system used by them satisfies 
the last three assumptions to a first-order 
approximation. 

To facilitate the comparison between this 
theory and the experimental results, the thermal 
resistance data has been normalized to the 
thermal resistance observed when the system 
pressure was 0.6 bars absolute. It is clear that 
there is good qualitative agreement between the 
theory, shown as a solid line in Fig. 7. and the 
test data of Bleunven et al. The tendency for 
the test data to be lower than the prediction 
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0 t 
‘! 2 3 4 5 6 7 

Normalized pressure, P * 

FIG. 7. Resistance Rr vs. pressure P*. 

FIG. 8. Resistance R, vs. wettability number W. 
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may be due to the fact that assumption 6 is not 
strictly true; i.e. the quantity of gas in the cavities 
may be a mixture of the cover and liquid metal 
vapor and would not remain constant with in- 
creasing system pressure. 

Calculated values of the thermal contact 
resistance for a stainless-steel/NaK (569; K) 
interface are presented in Fig. 8 for several values 
of gas cavity density and the wettability number. 
It was assumed that a realistic range for the 
wettability number was 0.85-1.0 and most prob- 
ably the values encountered in practice would 
lie in the range 0*940995 when the liquid metal 
readily wets the solid. To show the effect of the 
gas cavity density, values of 9, 49 and 100 
cavities per cm’ have been arbitrarily selected. 
The lowest value will correspond to the case 
where the solid surface is smooth and the liquid 
metal easily wets the solid ; on the other hand, 
the largest value will correspond to the case 
where the surface is quite rough and there is 
poor wetting of the solid. 

It is not possible, at this time, to predict the 
gas cavity density or the wettability number from 
the description of the apparatus employed. The 
two parameters are not independent, but if II 
is fixed, W can be considered as a measure of the 
size of the cavities. 

Note that the predicted values of the thermal 
contact resistance for W > 0.92 qualitatively 
agree with the test data, Figs. 1 and 2. It appears 
that n = 100 cavities per cm2 corresponds to the 
case where the system was placed under a 
vacuum of 10m3 mmHg before and after the 
filling with NaK, and, once filled, argon was 
used as the cover gas. On the other hand, n = 9 
appears to correspond to the case where the 
system was filled and emptied twice with NaK 
under atmospheric pressure, and before the 
third filling, the system was placed under a 
vacuum of low3 mmHg, which lasted 1 h. 
The system was then filled with NaK at 3Oo’C 
under a cover of argon. Obviously this method 
will reduce the number of gas cavities and also 
increase the percentage of the interface wetted 
by the liquid metal. 

CONCLUSIONS 

The thermal contact resistance at a solid 
stationary liquid metal interface based on certain 
conditions is shown to depend upon the thermal 
conductivities of the solid and liquid metal, the 
number of gas cavities per unit apparent inter- 
face area and upon wettability number. The 
theory was compared with test results obtained 
under conditions which completely satisfied 
three of the six assumptions, and to a first 
approximation, satisfied the other three assump- 
tions made. 

Although equations (291 and (341 give a 
highly simplified picture of this complex heat- 
transfer phenomenon, the theory provides infor- 
mation on the pertinent parameters which de- 
termine the magnitude of thermal contact 
resistance at a solid-liquid metal interface. 
This resistance can be made small be decreasing 
n and increasing W which can be accomplished 
by using smooth surfaces, suitably treating the 
system to remove trapped gases and operating 
at high system pressures. 
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ANALYSE DE LA RI%ISTANCE THERMIQUE D’UNE INTERFACE ENTRE UN SOLIDE 
ET UN MeTAL LIQUIDE AU REPOS DUE A LA PRfiSENCE DE CAVITfiS GAZEUSES 

R&um&Une analyse mathematique de la rtsistance thermique B l’interface est exbutk sur un tube de 
flux de chaleur Bementaire id&lid dans le cas d’une caviti gazeuse interposk entre un solide et un m&al 
liquide au repos La rksistance thermique est exprimk en fonction des conductivit& thermiques du solide 
et du m&al liquide, du nombre des cavitb gazeuses par unit& de surface apparente et d’un nombre de 
mouillabilith La demibre partie de l’article est consac& ii une comparaison qualitative entre la th&ie et 

les rtsultats d’essais de Blewen et al. On a observe un bon accord compte-tenu des hypothbses faites. 

EINE ANALYSE DES THERMISCHEN WIDERSTANDS AN EINER UNBEWEGTEN 
FLUSSIGMETALLSCHICHT INFOLGE VON GASEINSCHLUSSEN 

Zusammeufassung-Der thermische Kontaktwiderstand wurde an einer idealisierten, elementaren 
Wiirmestromriihre mathematisch untersucht fiir den Fall eines gasgeftilten Hohlraums zwischen einer 
festen und einer ruhenden fliissigen Metallschicht. Der thermische Widerstand wird angegeben in Abhiin- 
gigkeit der Wiirmeleitfihigkeit des festen und des fliissigen Metalls, de.r Zahl der Gashohlrlume pro 
Fliicheneinheit und einem Benetzbarkeitskoefflzienten. Der letzte Teil der Arbeit ist dem qualitativen 
Vergleich zwischen dieser Theorie und den Testergebnissen von Bleuven et al gewidmet. Die &rein- 

stimmung innerhalb der gemachten Annahmen war gut. 

AHAJIH3 TEnJIOBOI’O COIIPOTBBJIEHBH HA IIOBEPXHOCTB PA3AEJIA 
c@TBEPflbIf&HEIIO~Bkl3HbI~ XMAKklfl METAJIJbr, BbI3BAHHOrO 

HAJIMqHEM rA30BbIX ECABEPH 

_hFIOTa~II-npOBegeH MaTeMaTHWCKHfi aHaJIE13 TepMWIWKOrO COJIpOTHBJIeHHH IIOBepXHOCTEl 
pa3AeJla J(JlH Ha%UIbHOl'O J'WlCTKa UAWlH3ElpOBaHHOti TeIIJIOBOt Tpy6KEI, KOrJ$a I,OJIOCTb c 
ra30M p3CIIOJIEllWTCR MeWKAY TBepAhlM TWIOM I4 CTaUHOHElpHIAM X(IIAKIIM MeTaJlJIOM. 
TepMHWCKOe COIlpOTHBJleHkie BbIpaWETCR B 33BHCHMOCTH OT TellJfOllpOBO~HOCTIl TBepAOro EI 
mxgKor0 MeTanna, wxa noJrocTeR c ra30M Ha eAHHkiUy KaHcyweicfl nno4aAn EI KO3@#IH~W!HTa 
CMEIVHBEWMOCTH. B IIOCJIeAHet QCTH CTaTbM IIPMROAIlTCfi Ka'JWTBI?HHOe COnOCTaBneHHe 
Tt?OpHH CaKCnepaMeHTanbHbIMIl AaHHbIMH hOBeH3KApyIWX.~IpH C~WlaHHblX~OIly~~HIlRX 

H@IIOAaeTCH XOpOlUee COOTBt?TCTBHt? MWKQ' TeOpHI% II OIlbITOM. 


