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Abstract—A mathematical analysis of the thermal interface resistance is carried out on an idealized

elemental heat flux tube for the case of a gas cavity interposed between a solid and a stationary liquid

metal. The thermal resistance is expressed in terms of the thermal conductivities of the solid and liquid

metal, the number of gas cavities per unit apparent area and a wettability number. The last part of the

paper is devoted to a qualitative comparison between the theory and the test data of Bleuven er al. Good
agreement was observed within the assumptions made.

NOMENCLATURE
projected interface area;
radius of gas activity;
radius of elemental heat flux tube;
distances from interface ;
coefficient of proportionality for gas
cavity volume;
thermal conductivity ;
gas cavity density;
system or gas pressure;
, normalized gas pressure for data
reduction, P* = P/0-6;

RIS
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o

* -

0, heat flow rate;

R, thermal contact resistance defined by
equation (29);

R¥, normalized thermal contact resistance
for data reduction,
R} = R/R(P = 06);

r, radial distance from centre of the gas
cavity in the interface plane;

T temperature ;

u, auxiliary coordinate, u = sinh(;

v, auxiliary coordinate, v = sin d;

W, wettability number, W = (4a — Ag),

Aa;
X, y,z, cartesian coordinates:

1 Present address: University of Waterloo, Waterloo,
Ontario, Canada.

93

o, angle subtended by gas cavity;

d, thickness of gas cavity;

¢, oblate spheroidal coordinate ;

Y, oblate spheroidal coordinate.
Subscripts

a, apparent or average;

c, contact;

e, extrapolated;

g, gas;

i, interface ;

1,2,  components of heat flux tube, solid

and liquid, respectively.

INTRODUCTION
MANY modern power plants, whether large

nuclear reactors or small spacecraft systems,
utilize liquid metals as single-phase coolants.
Since heat is conducted across solid/liquid
metal interfaces, it is important that due account
be made of the additional thermal resistance at
these interfaces, especially when the heat flux is
very large. At present this additional thermal
resistance is determined experimentally or com-
pletely ignored.

Several experimental studies [1-9, 15, 16]
dating back to the early 1950’s were directed
towards finding the laws which governed heat
transfer between a metal wall and a flowing liquid
metal. It is evident that if there is contact resis-
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tance between the metal wall and the liquid
metal, the overall thermal conductance will
be greatly reduced. It was found that the experi-
mental values of Nusselt number were well
below the predicted values. This discrepancy
was attributed to various factors such as scale
or oxide on the walls of the system, to gas entrain-
ment and to the nonwetting of the tube walls by
the liquid metal.

Kirillov et al. [8] were able to determine
experimentally the thermal resistance between
NaK liquid metal flowing in a copper tube.
They observed a significant thermal resistance
which persisted for many hundreds of hours of
operation of the system. After about 500 h
this interface resistance decreased and became
so small that it could not be measured. It was
concluded that the continuous flow and purifi-
cation of the liquid metal removed all traces of
scale and oxide; thus removing the cause of the
interface resistance.

Subbotin et al. [9] reported that tests with
mercury flowing in a steel tube with uniform
heat flux showed that the interface resistance was
dependent upon the Reynolds number. It was
concluded that this resistance could not be due
to a permanent scale or oxide layer on the tube
wall.

Several, more recent, studies [ 10-12] examined
in particular the effects of gas entrainment,

nonwettability of liquid metal and the presence
of oxides upon the heat transfer between a
solid and a liquid metal. The other studies
[13, 14] used the analogy between electrical and
thermal resistance in an attempt to clarify
the important parameters which influence the
flow of heat between a solid and a liquid metal.

The most recent experimental study [17]
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FiG. 1. Thermal resistance data from reference {17]. Wall
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determined the effect of the system pressure,
and theinitial treatment of the wall on the thermal
contact resistance between stainless steel and a
stationary NaK liquid metal. They found that
the system pressure had a strong influence upon
the interface resistance, Figs. 1 and 2. The resis-
tance (for example, at a system temperature
of 150°C and an initial treatment of the wall
with cold argon) decreased from about 0-60°C/W
ata pressure of 0-6 bars absolute to about 0-15°C/
W at about 3 bars absolute. Upon returning to
the initial pressure of 0-6 bars without changing
the system temperature, they obtained about the
same (within S per cent)initial thermal resistance.
As the system temperature was increased thereby
assuring that the liquid would wet the metal
surface even more, the thermal resistance de-
creased; but always they observed the same
characteristic curve of resistance versus system
pressure. When the initial treatment of the wali
was accomplished with hot argon rather than
cold argon the thermal resistance was markedly
decreased. Again they observed the characteristic
curve of resistance versus system pressure. The

simultaneous return of the system to the initial
system pressure resulted in the same initial
thermal resistance.

Since their system was clean (no scale or
oxide on the walls), and the NaK liquid metal
was pure, and the tests were conducted with a
static fluid, the thermal resistance was due
exclusively to the presence of gas cavities formed
because of the nonwettability of the liquid
metal.

The aim of this work is to provide a theory
which will give the important parameters and
their influence upon the thermal contact resis-
tance between a solid and a stationary liquid
metal when gas cavities are present. This theory
excludes the effects of scales and oxides which
may be present on walls and the effects of gas
entrainment by the liquid.

MATHEMATICAL MODEL
When aliquid metal is in contact withametallic
surface, intimate contact will not occur over the
entire common interface, Fig. 3(a). Because the
liquid metal does not perfectly wet the solid
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F1G. 3. Schematics of solid—liquid metal interfaces
(b) Ideal interface between solid and liquid metal.
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surface, gas, such as air or argon, will be trapped
in the deepest parts of the surface. These gas
cavities will in general vary in number, size,
shape, and distribution over the apparent inter-
face. Itisevident that these gas cavity characteris-
tics will depend upon a number of physical and
geometric characteristics: the type of solid.
of liquid metal and of gas which form the inter-
face, the surface roughness, the surface clean-
liness, and the method of initial treatment. For
the following thermal analysis it will be assumed
that the number of cavities is known, that all the
cavities are thin circular discs, having the same
size. Furthermore, it will be assumed that all
the cavities are uniformly distributed over the
apparent interface.

Since the thermal conductivities of the metal
and liquid metal are much greater than the
thermal conductivity of the gas, heat will flow
around the gas cavity, i.e. the region of the inter-
face occupied by the cavity is impervious to heat
flow. As a consequence of these assumptions,
there exists a number of identical heat flux tubes
in the form of hexagonal cylinders having adia-
batic walls and in the center of each tube there
is a gas cavity. The hexagonal cylinders will be
approximated by circular cylinders having the
same cross-sectional area. The interface between
the solid and liquid metal is assumed to be flat
because for most machined solids the surface
irregularities have very small slope [18].

Finally it is assumed that there is intimate
contact between the solid and liquid metal
beyond the cavities and, therefore, there is no
thermal resistance at this part of the interface.

TEMPERATURE DISTRIBUTION

For the model of an elemental heat flux tube
described above, Fig. 4, the temperature distri-
bution, and implicitly the thermal resistance,
must satisfy the Laplace differential equation
in cylindrical coordinates:
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F1G. 4. Elemental heat flux tube.

and 1s subject to the following boundary con-
tions:

0T,(r, 0)

oT(r,0
K, g?)=K2 =0, 0<r<a @
T(n0) = Trn0) =T, a<r<b (3
g T 0
0z
OTyb,2)  Tyb,z)
o or 0 )
0Ty(r, 2) Q
oz K, mb? b (©)
0Ty, 2) Q
- = z<b 7
oz K,nb? @)

O is the rate of heat transfer through the ele-
mental heat flux tube per unit time, K, and K,
are the thermal conductivities of the solid and
liquid metal respectively, and b, the radius of the
heat flux tube, depends upon the density of gas
cavities per unit apparent area, i.e. nnh? = 1.
The gas cavity is represented by a thin
circular disc of radius a and thickness &(6/a < 1).
The boundary condition (2) states that the disc
is impervious to heat transfer. By using symmetry
of heat flow arguments it is assumed that the
common interface temperature is uniform, boun-
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dary conditions (3) and (4). Since the disc is at
the origin of the chosen coordinate system,
the temperature distribution is axisymmetric and
the heat flow lines enter and leave the interface
at right angles and tend to become parallel to
the z-axis at large values of z and r. At large
distances from the interface the temperature
field must be nearly uniform so that isothermal
planes T,(d,r) and T,(—d,r) can be placed at
symmetrical distances from the interface.

The mathematical difficulties presented by
the mixed boundary conditions (2) and (3) can be
circumvented by the use of oblate spheroidal
coordinates ({, ) with the origin in the center of
the disc [19]. Introducing the auxiliary co-

ordinates (u, v) we have:
u = sinh {,

)

and the cylindrical coordinates (r, z) can be
expressed as:

r =acosh{cosn = a./(u? + 1) /(1 — v?), 9)

z=asinh{siny =auv,

v =siny

where a is the radius of the non-conducting
disc.

Constant values of { and n can be chosen to
represent the heat flow lines and the isothermal
surfaces respectively [19]. In particular v = 0
describes the isothermal interface T; and u = 0
describes the adiabatic disc itself Introducing
(9) into (1) we obtain a new expression for the
Laplacian:

0 oT i} oT

Solutions to (10) are found by separation of
variables; by assuming T = U(w). V(v) and
introducing into (10) we get:

1d . dU

14d
-‘vaﬁl

Several solutions are possible for specific

- v?) %%] =m? (11)

values of the separation constant, m?, and they
are of the type of particular integrals, since the
boundary conditions have not been utilized.
Thus, for m? = 2, we find as suggested by:

itan"u =(1+u)"L

du
and
id—tanh'1 v=(1—-0v)"1
dv ’
that

T(u,v) = U.V = {Au + Blutan™' u + 1]}.
x {Cv + D[vtanh™'v — 1]}
satisfies (10).
Since T(u, 0) = T, we can select D =0 in
(12), and add the constant T, because the
temperature must be finite along v =1, ie.

along the z-axis. The temperature in the auxiliary
coordinates now becomes:

T(u,v) = V{A'u + B [utan"'u + 1]}
+ T,

(12)

(13)

In order for the solution to be symmetric about
the common interface we must set 4’ = 0.
The remaining coefficient can be determined
from the condition at distances far from the inter-
face. Since tan™'u — /2 as u - oo, the tem-
perature gradient becomes, for large values of u,

. 0T 0 L nl
lim 2= B ;L P
:Lw 0z (u, v)—)az I:BvuZ] B 2a

Upon introducing condition (6) gives

22 0

n K nb?*

The temperature distribution in the upper

half of the heat flux tube can now be expressed
as:

!

2 0
T(u0)=T + ~a—2_ -t
1w, v) i+ —a b2 [uvtan™'u + v] (14)

or as

2
T =T +—-a—"—
I(Ca ") l+ TEaKlnbz

(sinh {) + sin n].

[sinh { sin ntan~!

(15)
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This equation satisfies (1) and all the boundary
conditions (2)-(6). A similar expression can be
obtained for the lower half of the heat flux tube,
but here K, is to be used and the sign before the
second term will be negative.

An approximate expression for the tempera-
ture distribution in polar coordinates can be
obtained if r/a > 2'5:

2aQ
K, nb?

z, A+ z
x{;tan ‘|: p ]+ \/(224_,.2)}' (16)

THERMAL CONTACT RESISTANCE
In Fig. 5 we have shown the isothermal sur-
faces in the region near the interface. It can be
shown that the maximum interface temperature

Tir,z2)=T, +

z

_ k] ﬂQ

isotherms

Q 7i, 20Q
\ k, b
L’_A ) r

2

FiG. 5. Temperature distribution near the interface.

on the upstream side (solid when the heat flows
from solid to liquid metal) occurs at the center
of the disc and has the value T, + (2/a}{aQ/
K ,7mb?). The temperature distribution over the

disc from (15) with (9) is:
2
ol

aQ
O0<r<a.

Q>

2
Ti(r,00 = T + 2 K.nb?

VAN

(17

From symmetry arguments it can be shown
that the minimum interface temperature on the
downstream side (liquid metal) occurs at the
center of the disc and the temperature distri-

bution over the disc is:
[1 - 0]
(¢4

2 aQ
"~ nK,mb?

0<r<a (18

We can define an average interface temperature

for both sides of the interface as:
b

1
T,z=0= n—szTl(r,O)andr

0

TZ(rv 0) = T;

4 a’Q
=T+ -— %
g 1Y
and
b
1
T(z=0)= WJ T,(r,0) 2nr dr
0
4 a’Q
=T — s =
' 3K,n* b* (20)

Figure 6 shows the complete temperature
distribution for an elemental heat flux tube, and
it is seen that the temperature along the wall of
the flux tube is continuous through the interface
Ty(r = b) = Ty(r = b) when z = 0. The average
temperature as defined by (19) and (20) will be
discontinuous across the interface. We could
have shown the temperature distribution along
the z-axis in both the solid and liquid metal, and
this also would be discontinuous across the
interface. All three of these temperature distri-
butions T(r = b), T(r = 0), and T, will approach
asymptotically the same equation as z — oc, i.e.

T,=Tr=b=Tr=0=1,
2 aQ |mc:z
i [
+ n K nb? [Za + ]
for the solid. A similar argument holds for the

liquid metal side of the elemental heat flux.
The temperature drop across the interface
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due to the presence of the gas cavity is defined
as the difference between the interface tempera-
tures which are obtained by extrapolating from
large z (both sides) to the interface, Fig. 6, so that :

A’I(‘: = ’1:21 - 7;2 = A'I(‘:l + AT’(‘:: (21)
Consider one side only (solid, for example) where
oT, |
AT, = lim |{T, —z—2 - T,|;
= lim [al i

but it can also be shown that

2 aQ

T, 0=T,z=0+-
WE>0=T, =0+

[zn
a2 ’

and also that
oT, 2 _ag fix
0z nK,mb?|a2|
and so that (22) reduces to

AT, =T, (z=0-T,

where T, (z = 0) is defined by (19).
Similarly for the liquid metal side we have:

AT, =T, - T, (z=0) (24)

(23)

Adding (23) and (24) gives us the total tempera-
ture drop across the interface due to the presence
of the gas cavity, thus:

8a*Q
AL = 3n2Kb*

where K = 2K ,K,/K, + K,.
The thermal resistance across the interface
is defined as:
T.—T, AT 8a°
R, =% %= = ——.
¢ 0 Q0 3n’Kb*
where K represents the physical characteristics
and a, b represent the geometric characteristics
of the interface. Equation (26) can be written in
terms of the gas cavity density, and the wettability
number W which is defined as the ratio of the
wetted area to the total apparent area, ie.
W = Aw/Aa = (Aa - Ag)/Aa‘
Thus we have:

(25)

(26)

a
— = - 3
b= - W,

27
and
b=1//nn (28)

Thus, by substitution of (27) and (28) into (26),
we obtain the thermal interface or contact
resistance :
Jn
R, = 0-480—K— [1-w] (29)

This expression shows that the thermal resistance
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depends upon the thermal properties of the
solid and the liquid metal, the density of cavities
and the wettability number. The resistance is
independent of heat flux density. Once the
number of cavities is fixed, the resistance can
only be changed by means of the wettability
number W, i.e. by the size of the cavities.

EFFECT OF SYSTEM PRESSURE

To determine the effect of system pressure let
us use the model shown in Fig. 3(c). We also
assume that the number of cavities and the total
weight of gas is fixed, i.e. the system has been
filled under a certain gas pressure, say argon at
ambient conditions, and, therefore, the quantity
of gas at the interface will remain constant as the
system pressure is changed.

The cavity is modelled as a cone subtending a
very large angle « > 170° (o depends upon the
surface roughness, surface tension, etc.). The
height J of the cavity is very small relative to the
cross section.

The volume of the cavity can be written as

V = Ba’® (30
where B is the proportionality constant and a
is the radius of the cavity. Assuming perfect
gas laws we can for a constant system tempera-
ture write that a, and a, are related to the pres-

sure change by
a\’
a;

Suppose that n is fixed, then b is also constant
and we can write
1-W, f
1 - w, |’

where W, and W, correspond to P, and P,,
respectively.

Utilizing (31) and letting P = P,/P, we
obtain the following relationship between W,
W, and P:

-5 31)

ay

(32)

ay

1 - W,

= P%. (33)

YOVANOVICH

When (33) is substituted in the ratio R_,/R,, we
obtain

R. P, = R.,P, = constant, (34)

which shows that for a fixed system (constant
gas weight and constant gas cavity density) and
constant operating temperature, the thermal
contact resistance will decrease hyperbolically
with increasing system pressure.

COMPARISON OF THE THEORY WITH THE
DATA OF BLEUNVEN ET AL. [17]

The results of the thermal analysis developed
in this paper on thermal contact resistance made
use of some assumptions which are here sum-
marized :

1. Heat transfer occurs across a flat interface
between a solid and a stationary liquid metal

2. The gas cavity is impervious to heat flow.

3. The interface is free of any oxide and the
contact beyond the gas cavity is assumed to be
perfect.

4. The shapes of each gas cavity and associated
heat flux tube were idealized as a circular disc
and a coaxial tube, respectively.

5. All gas cavities were assumed to be uniformly
distributed and of the same size.

6. The quantity of gas in the cavities was
assumed to be constant independent of tem-
perature and pressure changes.

The test data of Bleunven e: al. [17] satisfy the
first three approximation listed above, and it is
assumed that the system used by them satisfies
the last three assumptions to a first-order
approximation.

To facilitate the comparison between this
theory and the experimental results, the thermal
resistance data has been normalized to the
thermal resistance observed when the system
pressure was 06 bars absolute. It is clear that
there is good qualitative agreement between the
theory, shown as a solid line in Fig. 7. and the
test data of Bleunven et al. The tendency for
the test data to be lower than the prediction
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may be due to the fact that assumption 6 is not
strictly true; i.e. the quantity of gas in the cavities
may be a mixture of the cover and liquid metal
vapor and would not remain constant with in-
creasing system pressure.

Calculated values of the thermal contact
resistance for a stainless-steel/NaK (56°%; K)
interface are presented in Fig, 8 for several values
of gas cavity density and the wettability number.
It was assumed that a realistic range for the
wettability number was 0-85-1-0 and most prob-
ably the values encountered in practice would
lie in the range 0-94-0-995 when the liquid metal
readily wets the solid. To show the effect of the
gas cavity density, values of 9, 49 and 100
cavities per cm? have been arbitrarily selected.
The lowest value will correspond to the case
where the solid surface is smooth and the liquid
metal easily wets the solid; on the other hand,
the largest value will correspond to the case
where the surface is quite rough and there is
poor wetting of the solid.

It is not possible, at this time, to predict the
gas cavity density or the wettability number from
the description of the apparatus employed. The
two parameters are not independent, but if n
is fixed, W can be considered as a measure of the
size of the cavities.

Note that the predicted values of the thermal
contact resistance for W > 092 qualitatively
agree with the test data, Figs. 1 and 2. It appears
that n = 100 cavities per cm? corresponds to the
case where the system was placed under a
vacuum of 10~3 mmHg before and after the
filling with NaK, and, once filled, argon was
used as the cover gas. On the other hand, n = 9
appears to correspond to the case where the
system was filled and emptied twice with NaK
under atmospheric pressure, and before the
third filling, the system was placed under a
vacuum of 1073 mmHg, which lasted 1 h
The system was then filled with NaK at 300°C
under a cover of argon. Obviously this method
will reduce the number of gas cavities and also
increase the percentage of the interface wetted
by the liquid metal.

CONCLUSIONS

The thermal contact resistance at a solid
stationary liquid metal interface based on certain
conditions is shown to depend upon the thermal
conductivities of the solid and liquid metal, the
number of gas cavities per unit apparent inter-
face area and upon wettability number. The
theory was compared with test results obtained
under conditions which completely satisfied
three of the six assumptions, and to a first
approximation, satisfied the other three assump-
tions made.

Although equations (29) and (34) give a
highly simplified picture of this complex heat-
transfer phenomenon, the theory provides infor-
mation on the pertinent parameters which de-
termine the magnitude of thermal contact
resistance at a solid-liquid metal interface.
This resistance can be made small be decreasing
n and increasing W, which can be accomplished
by using smooth surfaces, suitably treating the
system to remove trapped gases and operating
at high system pressures.
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ANALYSE DE LA RESISTANCE THERMIQUE D’'UNE INTERFACE ENTRE UN SOLIDE
ET UN METAL LIQUIDE AU REPOS DUE A LA PRESENCE DE CAVITES GAZEUSES

Résumé—Une analyse mathématique de la résistance thermique & I'interface est exécutée sur un tube de
flux de chaleur élémentaire idéalisé dans le cas d’une cavité gazeuse interposée entre un solide et un métal
liquide au repos. La résistance thermique est exprimée en fonction des conductivités thermiques du solide
et du métal liquide, du nombre des cavités gazeuses par unité de surface apparente et d’un nombre de
mouillabilité, La derniére partie de I’article est consacrée & une comparaison qualitative entre la théorie et
les résultats d’essais de Blewen et al. On a observé un bon accord compte-tenu des hypothéses faites.

EINE ANALYSE DES THERMISCHEN WIDERSTANDS AN EINER UNBEWEGTEN
FLUSSIGMETALLSCHICHT INFOLGE VON GASEINSCHLUSSEN

Zusammenfassung—Der thermische Kontaktwiderstand wurde an einer idealisierten, elementaren

Wiirmestromréhre mathematisch untersucht fiir den Fall eines gasgefiillten Hohlraums zwischen einer

festen und einer ruhenden fliissigen Metallschicht. Der thermische Widerstand wird angegeben in Abhin-

gigkeit der Wirmeleitfahigkeit des festen und des fliissigen Metalls, der Zahl der Gashohirdume pro

Flicheneinheit und einem Benetzbarkeitskoeffizienten. Der letzte Teil der Arbeit ist dem qualitativen

Vergleich zwischen dieser Theorie und den Testergebnissen von Bleuven et al gewidmet. Die Uberein-
stimmung innerhalb der gemachten Annahmen war gut.

AHAJIN3 TEIIJIOBOI'O COITPOTUBJEHUA HA NOBEPXHOCTU PA3IEJNA
« TBEPABIN-HENNOABUKHBIN HUJIKUNX METAJJI», BRIBBAHHOIO
HAJINYUEM T'A3OBBIX KABEPH

AnBoTanua—IIpoBefieH MaTeMaTHYeCKHUIt AHATN3 TEPMUIECKONO CONPOTHBIIEHUSA IOBEPXHOCTH
pasgena AJs HA4aJbHOTO YYaCTHA HAeadu3MpPOBAHHON TerioBo# TpYyGKM, KOTAA HOJOCTH C
Ta30M pAcloJaraeTcd MemAy TBepAEM TeJOM # CTALHMOHAPHBIM (KUAKAM METaJJioM.
TepMuyecroe CONPOTHBIIEHNE BHPAKAGTCA B 3aBMCUMOCTH OT TEIJIOIPOBOJHOCTH TBEPMOTO M
MKUIKOT0 METAJLIIA, YHCJIA TOJIOCTel ¢ Ta30M Ha efMHUIY KasKyIlelcA IIomanyu n Koa ddunuenta
CMauMBaEeMOCTH. B MmoclemHell 9acTH CTATBH NPUROSUTCA KAYECTBEHHOE COMOCTABIECHME
TEOPHMH C DKCHEPHMEHTAIBHHMY JaHHKMHI Bmosena u npyrux. IIpy crenaHHHX qomynieHnAx
Ha{uolaeTCa XOpoiliee COOTBETCTBIE MEAY TeOpHeH U ONMHTOM .



